Enabling Robust State Estimation Through Measurement Error Covariance Adaptation
نویسندگان
چکیده
منابع مشابه
Robust state estimation in power systems using pre-filtering measurement data
State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...
متن کاملHeteroskedasticity-Autocorrelation Robust Covariance Estimation Under Non-stationary Covariance Processes
The need to estimate variance-covariance matrix in a time series regression arises often in economic applications involving macroeconomic or finance data. In this paper, we study the behavior of two most popular covariance matrix estimators, namely the Kiefer, Vogelsang and Bunzel kernel estimator without truncation (Kiefer, Vogelsang and Bunzel 2000, KVB thereafter) and standard consistent ker...
متن کاملRobust Linear Estimation with Covariance Uncertainties
We consider the problem of estimating a random vector x, with covariance uncertainties, that is observed through a known linear transformation H and corrupted by additive noise. We first develop the linear estimator that minimizes the worst-case meansquared error (MSE) across all possible covariance matrices. Although the minimax approach has enjoyed widespread use in the design of robust metho...
متن کاملAdaptive M-Estimators For Robust Covariance Estimation
Robust covariance estimates are required in many applications. Here, a promising adaptive robust scale estimator is extended to this problem and compared to other robust estimators. Often the performance analysis of covariance estimators is performed from the perspective of the final application. However, different applications have different requirements, hence we make a comparison based on so...
متن کاملRobust estimation of multivariate covariance components.
In many settings, such as interlaboratory testing, small area estimation in sample surveys, and heritability studies, investigators are interested in estimating covariance components for multivariate measurements. However, the presence of outliers can seriously distort estimates obtained using standard procedures such as maximum likelihood. We propose a procedure based on M-estimation for robus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Aerospace and Electronic Systems
سال: 2020
ISSN: 0018-9251,1557-9603,2371-9877
DOI: 10.1109/taes.2019.2941103